Surface Organometallic Chemistry of Tin: Formation of the Grafted Organometallic Complex $(\text{S} - 0)_2$ Sn(n-C₄H₉)₂ by Reaction of H₂Sn(n-C₄H₉)₂ with the Surface of a Partially **De h y dr ox y la ted Silica**

C. N&ez, A. Choplin, F. Lefebvre, and J. M. Basset'

Laboratoire de Chimie Organomdtallique de Surface, EP CNRS **48,** ESCIL, 43 Bd. du 11 Novembre 1918, 69616 Villeurbanne Cedex, France, and Institut de Recherches sur la Catalyse, associated with l'Universit6 Claude Bernard, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex, France

E. Benazzi

Institut Français du Pétrole, 1-4 avenue de Bois-Préau, 92506 Rueil-Malmaison

Received June *10,* 1993'

Reaction of H₂Sn(n-C₄H₉)₂ with the surface of Aerosil silica dehydroxylated at 200 or 500 °C was followed by surface microanalysis, quantitative analysis of the evolved gases, ¹³C CP-MAS NMR, and infrared spectroscopy. At room temperature after a short period of interaction, the starting complex is simply physisorbed on the silica surface. Two types of weak interactions occur between surface silanols and both the CH groups of the butyl ligands and the tin hydride(s). For longer periods of interaction and/or higher temperature, a well-defined surface species (3Si-O)zSnBuz **(2)** is formed on both types of silica. The infrared and I3C CP-MAS data are consistent with a hydrogen-bonding interaction between surface butyl ligands and surface silanols. Possible formation of $(>\Sigma_{i}-$ O)Sn(H)Bu, as an intermediate in the formation of **2** is discussed.

Introduction

There are few examples of (relatively) well-defined surface organometallic fragments grafted onto the surfaces of inorganic oxides.' However, the synthesis of well-defined surface organometallic fragments is an important goal in the field of SOMC as well as for catalytic purposes and molecular separations in zeolites.2 We have previously shown that a relatively well-defined species, $>Si-O-SnBu₃ (1)$ can be obtained on the surfaces of $SiO₂₍₂₀₀₎$ or $SiO₂₍₅₀₀₎$ by several routes:³

$$
50^{\circ}C
$$

\n
$$
80^{\circ}C
$$

\n<math display="block</math>

$$
+ S_1 - S_2 - S_3 - S_3 - S_4 + N_0
$$

\n
$$
+ S_3 - S_4 - S_4 + N_0
$$

\n
$$
+ S_4 - S_4 + N_0
$$
 (1)

1 has been fully characterized by l3C CP-MAS and Il9Sn MAS NMR, analytical measurements, and IR spectroscopy. In this contribution, we wish to report the synthesis of another well defined species, $(3\pi-O)_{2}SnBu_{2}$ (2), which is obtained by reaction of Bu2SnH2 with a silica surface partially dehydroxylated at 200 or 500 °C.

Experimental Section

Materials. Aerosil silica from Degussa with a surface area of **200** m2 g⁻¹ was dehydrated and dehydroxylated for 14 h under dynamic vacuum (10⁻⁴ Torr), either at 200 °C (SiO₂₍₂₀₀₎) or at 500 °C (SiO₂₍₅₀₀₎).

BuzSnH2 was synthesized by the reaction of LiAIH4 with BuzSnClz according to a previously described procedure? Thecomplex was purified

- * To whom correapondence should **be** addressed at ESCIL. * Abstract published in *Aduance ACS Abstracts,* January **15, 1994.**
- (1) Basset, J. M.; Gates, B. C.; Candy, J. P.; Choplin, A.; Leconte, M.; Quignard, F.; Santini, C. Surface Organometallic Chemistry; Molecular Approach to Surface Catalysis; Kluwer: Dordrecht, The Netherlands, Approach to Surface Catalysis; Kluwer: Dordrecht, The Netherlands,
1986.
- **(2)** Thblier, A.; Custodkro, E.; Choplin, A,; Basset, J. M.; Raatz, F. *Angew. Chem., Int. Engl. Ed.* **1990,** *29,* **205.**
- (3) Nédez, C.; Théolier, A.; Lefebvre, F.; Choplin, A.; Basset, J. M.; Joly, J. F. J. Am. Chem. Soc. 1993, 115, 722.
(4) van der Kerk, G. J. M.; Noltes, J. G.; Luijten, J. G. A. J. Appl. Chem.
- **1957,** *7,* **366.**

by distillation under reduced pressure (75 °C, 12 Torr). Its IR spectrum contains v(C-H) bands at **2958, 2918, 2872,** and **2854** cm-1, b(C-H) bands at **1464,1457,1420, 1377,1358,** and **1341** cm-', and a v(Sn-H) band at 1835 cm⁻¹. In the ¹H NMR spectrum the hydride resonance is situated at 4.42 ppm $(\delta(Bu_2SnH_2))$ (CDCl₃). The ¹³C NMR (CDCl₃) resonances of the n-butyl carbons are situated at 7.3 (C_a), 13.8 (C_s), 27.2 (C_{γ}) , and 30.8 (C_{β}) ppm, in agreement with literature data.⁵⁻⁷ Microanalysis was consistent with the formula BuzSnH2.

Procedure for Grafting Bu₂SnH₂. After treatment of the silica surface at the desired temperature, liquid Bu_2SnH_2 was introduced (via a syringe through a septum) into a glass reaction vessel maintained under vacuum **(1P** Torr). This procedure was used for IR studies on compressed disks of silica, as well as for analytical or solid-state NMR experiments.

CP-MAS **NMR.** Spectra were recorded on a Bruker MSL-300 spectrometer operating at 75.47 MHz for ¹³C and equipped with a classical double bearing probe allowing a rotation frequency of **3-4** Wz. Spectra were recorded using cross-polarization $(90^{\circ}$ for ¹H = 6.2 μ s; contact time, 5 ms). The delay between each scan was fixed at 5 seconds, to allow complete relaxation of IH nuclei. Chemical shifts are given relative to TMS (external reference) and were confirmed with an intemal reference (adamantane, position of the highest peak at **37.7** ppm).

Infrared Spectroscopy. IR spectra were recorded on a Fourier Transform Nicolet **10-MX.** The spectra were recorded *in situ* in a cell with $CaF₂$ windows, according to a previously described procedure.⁸

Analytical Data. The gases evolved during the surface reaction were analyzed qualitatively and quantitatively by GC. Detection and titration of evolved hydrogen were carried out with a catharometer detector after separation on **5-A** molecular sieves. Hydrocarbons were analyzed by FID after separation on a capillary column, **50** m **X 0.32** mm.

ReSults

Reaction of Bu₂SnH₂ with $SiO_{2(200)}$. When Bu_2SnH_2 was brought into contact with the surface of silica₍₂₀₀₎ in the absence

- *(5)* Maddox, M. L.; Flitcroft, N.; Kaesz, H. D. J. *Orgammer. Chem.* **1965,** *4,* **50.**
- **(6)** Sawyer, A. K.; Brown, J. **E.** J. *Orgammer. Chem.* **1966,** *5,* **438. (7)** Kawakami, K.; Saito, T.; Okawara, R. *J. Organomet. Chem.* **1967,8,**
- **377.**
- **(8)** Psaro, **R.;Ugo, R.; Besson, B.;** Smith, A. K.; Basset, J. M. *J. Organomet. Chem.* **1981, 213,215.**
- *(9)* Mitchell, T. N. *J. Orgammer. Chem.* **1973,** *59,* **189.**

Figure 1. IR spectra of (a) silica₍₂₀₀₎, (b) silica₍₂₀₀₎ after reaction with $Bu₂SnH₂$ at room temperature, and (c) silica₍₂₀₀₎ after reaction for 24 h at **25 OC** and then **8** h at **100 OC.**

of solvent, the intensity of the $\nu(OH)$ band at 3747 cm⁻¹ corresponding to terminal silanols decreased instantaneously (Figure la,b). Two new bands were observed at lower frequency, a sharp band at **3697** cm-I and a broad band at **3600** cm-1. Simultaneously bands characteristic of the butyl groups were observed: v(C-H) at **2962,2924,2876,** and **2855** cm-1; 6(C-H) at **1466** and **1379** cm-l. Interestingly, two bands at **1837 (6)** and 1799 (sh) cm⁻¹ are attributed to ν (C-H) whereas Bu₂SnH₂ exhibits only one band in solution at **1835 (s)** cm-I.

We have previously observed³ that hydrogen bonding between the CH₃ groups of an alkane or an organometallic compound and surface silanol groups results in the shift of the $\nu(OH)$ band of the terminal silanol groups from **3747** to **3697** cm-1. This shift in infrared frequency was also observed with the species \rightarrow SiaSnBu3. **In** the present case, the band situated at **3697** cm-1 is rather narrow. Consequently we assume that we are again dealing with hydrogen bonding between some of the alkyl groups of adsorbed Bu_2SnH_2 and the remaining silanols, i.e., $\geq C-H \sim OH$.

The shoulder at **1799** cm-I, superimposed **on** the tail of the strongbandat **1837cm-1,1ikelycorrespondstoashifted** tin hydride vibration. If the tin hydride interacts with surface silanols, a specific band should be observed in the $\nu(OH)$ region of the silica. A shoulder at **3600** cm-', which could arise from such an interaction, is indeed present. The bands at **3600** and **1799** cm-I are also formed by interaction of Bu_3SnH with silica₍₂₀₀₎ at room temperature, but not during the room temperature physisorption of SnBu4 **on** silica(^^^).^ The bands at **3600** and **1799** cm-1 exhibit a parallel decrease in intensity with time. We therefore conclude that these bands are the results of an interaction between the tin hydride and the silanols.

Over time, the intensities of the ν (C-H) and δ (C-H) bands remained constant, whereas the band at **1835** cm-1 due to the $\nu(Sn-H)$ mode of physisorbed Bu₂SnH₂ decreased in intensity

Figure 2. Evolution of the IR spectra in the $\nu(Sn-H)$ region as a function of time. Reaction of Bu_2SnH_2 with (a) silica₍₂₀₀₎ and (b) silica₍₅₀₀₎.

(Figure **2a).** An intermediate band at **1854** cm-1 was observed. Finally, after **100** h at room temperature or after heating at 100

PPm Figure 3. ¹³C CP-MAS NMR spectra after reaction of Bu₂SnH₂ with $silica_{(200)}$ for 48 **h** at 100 °C.

°C for 8 h, no bands were present in the $\nu(Sn-H)$ region (Figure **IC).** Simultaneously, the band at **3600** cm-1 disappeared.

During the reaction between Bu_2SnH_2 and silica₍₂₀₀₎, H₂ is evolved. At 100 °C, the reaction was complete in 8 h. The amount of evolved hydrogen was then equal to 2 ± 0.05 mol per mole of grafted tin. No hydrocarbon was evolved at this temperature. When the same experiment was carried out with a large quantity of silica(2~) (e.g., **1** g instead of **0.02** g), the surface reaction was slower and a temperature of 150 °C was necessary to obtain 2 mol of H₂ evolved per mole of grafted tin. However, the reaction is also slightly less selective since some butane was evolved **(0.2** mol per mole of grafted tin). The elemental analysis of the corresponding sample showed the presence of 2 molar equiv of C4 per mole of grafted tin **(3.8%** Sn; **3.1%** C; C4/Sn = **2.0).**

The 13C CP-MAS NMR spectrum of a sample obtained by the reaction of Bu_2SnH_2 with silica₍₂₀₀₎ at 100 °C for 8 h contains four signals at **11.3, 14.7, 20.0,** and **26.5** ppm (Figure **3).** By comparison with the spectrum of the model compound $Bu₂Sn-$ (OMe)2, the peaks at **20.0** and **26.5** ppm are attributed to the α -carbon and $(\beta + \gamma)$ -carbons of the *n*-butyl chain, respectively. The signal at ca. **20** ppm is very broad (line width ca. **200** Hz) compared to the other peaks (line width ca. **100** Hz). This is probably due to the variety of grafting sites on silica, to be discussed later.

Reaction of Bu₂SnH₂ with silica₍₅₀₀₎. Similar observations were made with silica₍₅₀₀₎. Adsorption of Bu₂SnH₂ on silica₍₅₀₀₎ at room temperature resulted in a decrease in the intensity of the ν (O-H) band at 3747 cm⁻¹ due to linear silanols, and the appearance of bands at **3698** and **3600** cm-' (Figure 4a,b). The ν (C-H) and δ (C-H) bands corresponding to the butyl groups were observed at the same frequencies as on silica₍₂₀₀₎. The ν -(Sn-H) bands at **1837** and **1799** cm-l were also observed. The same explanation is proposed: Bu₂SnH₂ forms hydrogen bonds with silanol groups via aliphatic C-H groups as well as via a tin hydride ligand.

Slow consecutive surface reactions result in a decrease of intensity of the v(Sn-H) band at **1837** cm-I, followed by the appearance of a new v(Sn-H) band at **1854** cm-I which finally disappears after **24** h (Figures 2b and 4c) at **100** 'C. Note that the reaction is finished only after 24 h, instead of after 8 h on silica₍₂₀₀₎. The reason for this difference in kinetic behavior may be the different concentrations and/or mobilities of adjacent silanols on the two silicas.

An analysis of the gas phase at the end of the experiment revealed the evolution of 1.9 mol of H_2 per mole of grafted tin. Microanalysis of the product confirmed the presence of 2 mol of C4 per mole of grafted tin **(2.7%** Sn; **2.0%** C; C4/Sn = **1.8).** The 13C CP-MAS NMR spectrum of the sample after reaction is almost identical to that obtained on silica₍₂₀₀₎ (Table 1).

Figure 4. IR spectra of (a) silica₍₅₀₀₎, (b) silica₍₅₀₀₎ after reaction with Bu2SnHz at room temperature, and (c) silica(m) after reaction for **24** h at **25 OC** and then **24 h** at **100 OC.**

Discussion

 $Bu₂SnH₂$ interacts with the surface of silica at room temperature via hydrogen bonding between the C-H and Sn-H groups of the starting material and the surface silanols. This hydrogen bonding is characterized by a low-frequency shift of the ν (O-H) bands of the silanols (to **3697** and **3600** cm-*) as well as a low-frequency shift of the tin hydride band.

On both silica₍₂₀₀₎ and silica₍₅₀₀₎, the hydride ligands react progressively with surface protons with evolution of $2 \text{ mol of } H_2$ per mole of grafted tin. As the Sn loading is always lower than the quantity of available silanols ($\%$ Sn = 3.8 on silica₍₂₀₀₎ and 2.7 on silica₍₅₀₀₎), we propose that Bu_2SnH_2 reacts with the surface according to eq **3.**

23Si-OH + Bu,SnH, - (+SiO),SnBu, + H, (3) **2**

Another possible explanation (reaction of the hydride with a surface Si-O-Si bridge) can be discarded due to the low dehydroxylation temperature of silica. Strained, reactive sites are formed only at high temperature (higher than 600 °C). Unstrained sites exist at lower temperature, but formation of H_2 instead of Si-H argues against reaction with a Si-O-Si bridge.

Considering the various $\nu(Sn-H)$ bands observed during the reaction, it seems plausible that reaction **3** occurs according to **a** stepwise mechanisms. With time, the intense band at **1837** cm^{-1} corresponding to Bu_2SnH_2 decreases while a new band at **1854** cm-' appears and then disappears. The first reaction on the surface may be

ce may be
\n
$$
> Si-OH + Bu2SnH2 \rightarrow > Si-O-Sn(H)Bu2 + H2
$$
 (4)

However evidence in favor of 3 is speculative at the present time. Due to the high reactivity of 3, it is difficult to confirm such a hypothesis.

Table 1. ¹³C CP-MAS NMR Data Obtained for the Product of the Reaction of H₂SnBu₂ with Silica₍₂₀₀₎ and Silica₍₃₀₀₎ and Comparison with **Model Compounds**

surface	molecular precursor	expected surface organometallic species	δ (ppm)					
			C_{α}	C_{β}	C_{γ}	C_{δ}	C_{δ}	ref
$SiO_{2(200)}$	Bu ₂ SnH ₂	\rightarrow SiOSn(H)Bu ₂	14.7	26.5	26.5	13.0 ^c	11.3	D
SiO ₂₍₂₀₀₎	Bu ₂ SnH ₂	$(\geq$ SiO) ₂ SnBu ₂	20.0	26.5	26.5	13.0 ^c	11.3	n
SiO ₂₍₅₀₀₎	Bu ₂ SnH ₂	\rightarrow SiOSn(H)Bu ₂	14.9	26.8	26.8	12.9c	11.3	
$SiO_{2(500)}$	Bu ₂ SnH ₂	$(>\!\!S_1O_2\!\!SnBu_2)$	20.2	26.8	26.8	12.9c	11.3	
a	Bu ₂ SnH ₂		7.3	30.8	27.2	13.8		
a	Bu₁SnH		8.3	30.2	27.3	13.7		
a	SnBu		9.1	29.6	27.6	13.7		
SiO ₂₍₂₀₀₎	Bu_3SnH	>SiOSnBu	15.2	26.7	26.7	12.9	11.3	
SiO ₂₍₅₀₀₎	Bu ₁ SnH	\rightarrow SiOSnBu	15.2	26.7	26.7	13.0	11.3	
a	Bu ₁ SnOSiPh ₁		16.5	27.8	27.1	13.7		
a	$Bu_3Sn(OMe)$		14.1	28.4	27.4	13.7		
a	$Bu_2Sn(OME)_2$		19.5	27.8	27.2	13.8		

*⁰***In solution (CDC13).** *b* **This work.**

Evidence for reaction **3** and species 2 is much more conclusive, based on the analytical data, $C_4/Sn = 2 \pm 0.1$ for silica₍₂₀₀₎ and silica₍₅₀₀₎, the 1 mol of H_2 evolved per mole of grafted tin, and **no** evidence for a significant amount of evolved hydrocarbon. Also the intensities of the ν (C-H) and δ (C-H) bands were constant throughout the reaction up to 200 \degree C, confirming the fact that the butyl ligands remain coordinated to tin. Finally, evidence for the proposed structure 2 was obtained from a detailed analysis of the ¹³C CP-MAS NMR spectrum. The resonances of the α -, β -, and γ -C are similar to those of the model compound (n- C_4H_9)₂Sn(OCH₃)₂ (Table 1). The δ -C resonance was not found at ca. 13.8 ppm, but a shoulder (reproducible from oneexperiment to another) was observed at 13.0 ppm. There are two other resonances at 1 1.3 and 14.7 ppm (vide supra) which deserve some comment. The resonance at 11.3 ppm is probably due to a C-H bond hydrogen bonded to a surface silanol or a surface oxygen. A similar band was previously observed for $(>\mathbf{S}i-O)Sn(n-C₄H₉)₃,³$ but is not observed for model compounds such as Bu₂Sn-O- SiR_3 , $\text{Bu}_3\text{Sn}(\text{OMe})$, and $\text{Bu}_2\text{Sn}(\text{OMe})_2(\text{Table 1})$. This resonance is therefore attributed to the δ -C of the butyl chain of the grafted complex.

The chemical shifts of the β -, γ -, and δ -C of the grafted complexes (\rightarrow Si-O)SnBu₃ and (\rightarrow Si-O)₂SnBu₂ are very similar. Only the α -C resonances differ.

The chemical shift variation for α -C is similar to that observed for the model complexes $Bu_{+n}Sn(OMe)_n$ ($n = 0, 1, 2$). The increase in line width for $(\rightarrow Si-O)_{2}SnBu_{2}$ compared to $(\rightarrow Si-)$ $O(SnBu₃$ is probably due to lack of rotation about the O-Sn bond in the former complex, resulting in less averaging of the α -C environment.

The peak at 14.7 ppm may correspond to the species $(\geq S$ i- $O(Sn(H)Bu₂$. Although we have been unable to find a model compound corresponding to a monoalkoxy monohydridodialkyltin- (IV), we believe that such an interpretation is plausible. In compounds of the family $\text{SnH}_{x}\text{Bu}_{+x}$ ($x = 0, 1, 2$), the α -C resonance shifts only slightly upon substitution of a butyl ligand by a hydride, but a change in the number of Si-O-Sn bonds causes a large shift (Table 1).

Attempts to prepare $(\geq S_i-O)Sn(H)Bu_2$ by reaction of silica with an excess of Bu_2SnH_2 failed. The behavior was the same as that observed at low Sn loading. A simple explanation was obtained by molecular modeling. Due to its bulkiness, theamount of **Bu2SnH2** which can be adsorbed on the silica surface is always

lower than the quantity of silanols. However, the $\nu(Sn-H)$ band varies in shape as a function of the pretreatment temperature of the silica (which is responsible for the different apparent intensity ratios of the $\nu(Sn-H)$ and $\delta(C-H)$ bands), showing that the reaction mechanism is at least partly dependent on the silanol density.

Conclusion

Reaction of H_2SnBu_2 with silica dehydroxylated either at 200 or 500 °C leads to the formation of the well-defined surface complex $(>\mathbf{S}i-O)_{2}\mathbf{SnBu}_{2}(2)$, which has been fully characterized by surface microanalysis, quantitative analysis of the evolved gases, l3C CP-MAS NMR, and infrared spectroscopy. The **possiblesurfacestructuresof** 2depend on thenatureof thesilanols present on silica. Since similar results are obtained **on** silica(200) and silica₍₅₀₀₎, we may assume that the dibutyl tin fragment is grafted to two adjacent oxygen atoms **on** the silica. The following

From the ¹³C NMR data, we infer that surface organometallic fragments also interact with other silanols or oxygen atoms as shown:

In subsequent papers of this series, we will report the thermal decomposition of **1** and 2 on the silica surface and the surface mobility of the butyl groups as a function of temperature. The implications of these results in molecular separation (by grafting such complexes at the pore openings on the external surface of zeolites) will also be considered.